Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Pharmaceutics ; 15(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242759

RESUMO

Developing an efficient and cost-effective wound-healing substance to treat wounds and regenerate skin is desperately needed in the current world. Antioxidant substances are gaining interest in wound healing, and green-synthesized silver nanoparticles have drawn considerable attention in biomedical applications due to their efficient, cost-effective, and non-toxic nature. The present study evaluated in vivo wound healing and antioxidant activities of silver nanoparticles from Azadirachta indica (AAgNPs) and Catharanthus roseus (CAgNPs) leaf extracts in BALB/c mice. We found rapid wound healing, higher collagen deposition, and increased DNA and protein content in AAgNPs- and CAgNPs (1% w/w)-treated wounds than in control and vehicle control wounds. Skin antioxidant enzyme activities (SOD, catalase, GPx, GR) were significantly (p < 0.05) increased after 11 days CAgNPs and AAgNPs treatment. Furthermore, the topical application of CAgNPs and AAgNPs tends to suppress lipid peroxidation in wounded skin samples. Histopathological images evidenced decreased scar width, epithelium restoration, fine collagen deposition, and fewer inflammatory cells in CAgNPs and AAgNPs applied wounds. In vitro, the free radical scavenging activity of CAgNPs and AAgNPs was demonstrated by DPPH and ABTS radical scavenging assays. Our findings suggest that silver nanoparticles prepared from C. roseus and A. indica leaf extracts increased antioxidant status and improved the wound-healing process in mice. Therefore, these silver nanoparticles could be potential natural antioxidants to treat wounds.

4.
Chemosphere ; 310: 136888, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265706

RESUMO

The bioaccumulation, non-biodegradability, and high toxicity of Cd(II) and U(VI) in water is a serious concerns. Manganese ferrite/graphene oxide (GMF) nanocomposites were synthesized, characterized, and used to efficiently remove Cd(II) and U(VI) from an aqueous solution in this study. X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) analyses, respectively, confirmed the formation of GMF and the adsorptive removal mechanism. The XRD results revealed an amorphous structure when MnFe2O4 was loaded onto the GO surface. XPS results suggest that C = C, C-OorOH, and metal oxides are responsible for the removal of Cd(II) and U(VI) via electrostatic and chemical interaction. According to the Brunauer Emmett and Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterization analysis, GMF has a high surface area (117.78 m2/g) and a spherical shape with even distribution. The kinetics data were successfully reproduced by a pseudo-second-order non-linear model indicating the complexity of the sorption mechanism was rate-limiting. The maximum Langmuir uptake ability of GMF for Cd(II) and U(VI) was calculated to be 232.56 mg/g and 201.65 mg/g, respectively. Using external magnetic power, the prepared GMF can easily separate from the aqueous solution and can keep both metal ions under Environmental protection agency standards in water for up to six cycles of re-use of GMF. Finally, the GMF nanocomposite demonstrated significant promise as an adsorbent for removing Cd(II) and U(VI) from actual contaminated water samples. The antibacterial test was expanded to include gram-negative E. coli and gram-positive S. aureus to better understand GMF's bacterial inhibition efficacy.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Antibacterianos/farmacologia , Antibacterianos/análise , Cádmio/análise , Escherichia coli , Cinética , Staphylococcus aureus , Água/química , Poluentes Químicos da Água/análise
6.
Front Chem ; 10: 984218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212054

RESUMO

Nanoscale iron oxide-based nanostructures are among the most apparent metallic nanostructures, having great potential and attracting substantial interest due to their unique superparamagnetic properties. The green production of nanostructures has received abundant attention and been actively explored recently because of their various beneficial applications and properties across different fields. The biosynthesis of the nanostructure using green technology by the manipulation of a wide variety of plant materials has been the focus because it is biocompatible, non-toxic, and does not include any harmful substances. Biological methods using agro-wastes under green synthesis have been found to be simple, environmentally friendly, and cost-effective in generating iron oxide-based nanostructures instead of physical and chemical methods. Polysaccharides and biomolecules in agro-wastes could be utilized as stabilizers and reducing agents for the green production of nanostructured iron oxide towards a wide range of benefits. This review discusses the green production of iron oxide-based nanostructures through a simple and eco-friendly method and its potential applications in medical and sustainable agro-environments. This overview provides different ways to expand the usage of iron oxide nanomaterials in different sectors. Further, provided the options to select an appropriate plant towards the specific applications in agriculture and other sectors with the recommended future directions.

7.
Front Physiol ; 13: 894044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837021

RESUMO

Background/Purpose: Nonalcoholic fatty liver disease (NAFLD) constitutes a spectrum of liver diseases associated with various metabolic disorders. Exercise interventions reportedly manage the clinical outcomes of NAFLD, but their efficacy depends on exercise as well as characteristics of patient. We hypothesized that exercise could alleviate the elevated transaminases level, which may be associated with the characteristics of patients (age/bodyweight/sex) or exercise variables (frequency/intensity/duration). Therefore, we examined the effect of exercise on serum transaminases, and identified the variables influencing transaminases in NAFLD patients. Methods: Article search was conducted using electronic databases (PubMed, Web of Science, EMBASE, ScienceDirect, Google Scholar) until December 2021. Studies that involved examination and comparison of the effect of an exercise intervention on alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in NAFLD/nonalcoholic steatohepatitis patients were included. We calculated pooled effect upon a meta-analysis, determined correlations (between transaminases and characteristics of patients/exercise) by meta-regression, and assessed the influencing variable through subgroup analysis. Results: A total of 18 studies (22 trials) with 1098 NAFLD patients (exercise = 568; control = 530) were included. The pooled outcomes revealed that exercise intervention significantly decreased both ALT (p = 0.004) and AST (p = 0.001) levels in NAFLD patients. Meta-regression analysis showed decreased ALT (coef. = 1.138, p < 0.01) and AST (coef. = 0.459, p = 0.041) after intervention was correlated with the age of patients. Particularly, patients aged 30-39 years (MD: -25.89 U/L, 95% CI: -36.40 to -15.37, p < 0.00001) and 40-49 years (MD: -12.17 U/L, 95% CI: -20.38 to -3.96, p = 0.004) represented a substantial decrease in ALT levels. Additionally, the 50-59 years age group tended to have decreased ALT levels (MD: -3.94 U/L, 95% CI: -8.19 to 0.31, p = 0.07); however, patients above 60 years did not respond (p = 0.92) to exercise intervention. In contrast, exercise-induced AST reduction was found in only the 30-39 years age group (MD: -11.92 U/L, 95% CI: -16.78 to -7.06, p < 0.00001) and not in patients under the 40-49 (p = 0.19), and 50-59 groups (p = 0.12) and above 60 years (p = 0.15). Conclusion: Our findings suggest that the age of NAFLD patients may be an important variable in improving the levels of serum transaminases, and clinically young patients may have greater benefits from exercise than older patients.

8.
Front Physiol ; 12: 754731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867458

RESUMO

Background/Purpose: In this systematic review and meta-analysis, we assessed the effects of exercise (EX) combined with calorie restriction (CR) intervention on inflammatory biomarkers, and correlations between biomarkers and participants' characteristics were calculated in overweight and obese adults. Methods: An article search was conducted through PubMed, Web of Science, EMBASE, the Cochrane database, Scopus, and Google Scholar to identify articles published up to April 2021. Studies that examined the effect of EX + CR intervention on inflammatory biomarkers, including C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), and compared them with a CR trial in overweight and obese adults were included. We calculated the pooled effect by meta-analysis, identified the correlations (between inflammatory biomarkers and participants' characteristics) through meta-regression, and explored the beneficial variable through subgroup analysis. The Cochrane risk of bias tool and Methodological Index for Non-randomized Studies were used to assess the risk of bias for the included trials. Results: A total of 23 trials, including 1196 overweight and obese adults, were included in the meta-analysis. The pooled effect showed that EX + CR intervention significantly decreased CRP levels (P = 0.02), but had no effect on IL-6 (P = 0.62) and TNF-α (P = 0.11). Meta-regression analysis showed that the effect of EX + CR on CRP, IL-6, and TNF-α changes was correlated with lifestyle behavior of adults (Coef. = -0.380, P = 0.018; Coef. = -0.359, P = 0.031; Coef. = -0.424, P = 0.041, respectively), but not with age and BMI. The subgroup analysis results revealed that participants with sedentary lifestyle behavior did not respond to EX + CR intervention, as we found no changes in CRP, IL-6, and TNF-α concentrations (P = 0.84, P = 0.16, P = 0.92, respectively). However, EX + CR intervention significantly decreased CRP (P = 0.0003; SMD = -0.39; 95%CI: -0.60 to -0.18), IL-6 (P = 0.04; SMD = -0.21; 95%CI: -0.40 to -0.01) and TNF-α (P = 0.006; SMD = -0.40, 95%CI: -0.68 to -0.12) in adults without a sedentary lifestyle or with a normal lifestyle. Furthermore, the values between sedentary and normal lifestyle subgroups were statistically significant for CRP, IL-6, and TNF-α. Conclusion: Our findings showed that combination EX + CR intervention effectively decreased CRP, IL-6, and TNF-α in overweight and obese adults with active lifestyles, but not with sedentary lifestyle behavior. We suggest that 'lifestyle behavior' is a considerable factor when designing new intervention programs for overweight or obese adults to improve their inflammatory response.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33467139

RESUMO

Mango (Mangifera indica L.), known as the king of fruits, has an attractive taste and fragrance and high nutritional value. Mango is commercially important in India, where ~55% of the global crop is produced. The fruit has three main parts: pulp, peel, and kernel. The pulp is the most-consumed part, while the peel and kernel are usually discarded. Mango pulp is a source of a variety of reducing sugars, amino acids, aromatic compounds, and functional compounds, such as pectin, vitamins, anthocyanins, and polyphenols. Mango processing generates peels and kernels as bio-wastes, though they also have nutraceutical significance. Functional compounds in the peel, including protocatechuic acids, mangiferin and ß-carotene are known for their antimicrobial, anti-diabetic, anti-inflammatory, and anti-carcinogenic properties. The mango kernel has higher antioxidant and polyphenolic contents than the pulp and peel and is used for oil extraction; it's possible usage in combination with corn and wheat flour in preparing nutraceuticals is being increasingly emphasized. This review aims to provide nutraceutical and pharmacological information on all three parts of mango to help understand the defense mechanisms of its functional constituents, and the appropriate use of mangoes to enhance our nutrition and health.


Assuntos
Frutas/química , Mangifera/química , Extratos Vegetais/química , Suplementos Nutricionais , Alimento Funcional , Humanos , Índia , Valor Nutritivo , Sementes/química
10.
J Hazard Mater ; 402: 123882, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254822

RESUMO

Potential of the magnetic hollow-sphere nanocomposite, graphene oxide-gadolinium oxide (GO-Gd2O3) for arsenic (As) removal from real field water with developing a continuous operating system and antimicrobial activity were investigated. The characterization results suggest that the prepared GO-Gd2O3 is a hallow sphere wool-like nanocomposite having 50.91 m2 g-1 surface area. The sorption studies revealed that a high adsorption capacity (216.70 mg g-1) can be achieved using GO-Gd2O3 (0.1 g L-1) at a pH of 6.0, and temperature of 293 K. The main and novel observations from the loading of Gd2O3 are that the GO adsorption efficiency, adsorbent separation rate from aqueous solutions, and the stability of the composite have been altered. Thus, the developed material can overcome the separation and stability issues associated with the bare GO, and exhibits an enhanced adsorption capacity toward arsenic was higher or comparable with existing magnetic material. In addition, the developed adsorption method was well applied for real field water samples collected from the mining area of South Korea where the GO-Gd2O3 can reduce the quantity of arsenic under the maximum accepted concentration of arsenic considered fit for drinking water stipulated by environmental protection agencies. Furthermore, the GO-Gd2O3 nanocomposite shows a high bacterial photocatalytic inactivation and was comparable with other reports.


Assuntos
Arsênio , Grafite , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Gadolínio , Cinética , Fenômenos Magnéticos , República da Coreia , Água , Poluentes Químicos da Água/análise
11.
Biomolecules ; 10(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935798

RESUMO

In the present study, economically viable NiO nanoparticles were produced by biogenic preparation using stevia leaf broth and their in-vitro antioxidant and antimicrobial activities were evaluated. The properties of the prepared NiO nanoparticles were confirmed by analytical techniques such as Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), FE-SEM, and Fourier transform infrared spectroscopy (FTIR) analyses. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the size of synthesized nanoparticles ranged from 20 to 50 nm, most of which were spherical and few of which were agglomerated. The role of the biological moieties, which reduce and cap the nanoparticles, was studied using FTIR analysis. The prepared nanoparticles strongly inhibited gram-negative bacteria, which is a camper with gram-positive bacteria and fungi. Furthermore, it performs an effective in-vitro activity through α,α-diphenyl-ß-picrylhydrazyl (DPPH) reduction. Thus, it can be concluded that the effective and easy green synthesis process used for NiO nanoparticles provides potential antimicrobial agents against multidrug-resistant microbes.


Assuntos
Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Stevia/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde/métodos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão/métodos , Níquel/química , Tamanho da Partícula , Extratos Vegetais/química , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Stevia/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...